We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Facebook Launches AI Enhancement for MRI Scanners

By MedImaging International staff writers
Posted on 02 Sep 2020
Print article
Image: AI can help speed up and improve MRI scan quality (Photo courtesy of NYU Langone)
Image: AI can help speed up and improve MRI scan quality (Photo courtesy of NYU Langone)
Facebook (Menlo Park, CA, USA) and NYU Langone Medical Center (New York, NY, USA) have created an artificial intelligence (AI) system that can speed up magnetic resonance imaging (MRI) examinations.

The new system, called fastMRI, is based on a deep learning (DL) image reconstruction model optimized via dedicated multi-sequence training, in which a single reconstruction model is trained with data from multiple sequences with different contrast and orientations. Following training, data from 108 patients were retrospectively undersampled in a manner that would correspond with a net 3.49-fold acceleration of fully-sampled data acquisition and 1.88-fold acceleration. The ability of six readers to detect internal derangement of the knee was then compared for both clinical and DL-accelerated images.

The results demonstrated a high degree of interchangeability between the standard and DL-accelerated images; in particular, results showed that interchanging the sequences would result in discordant clinical opinions no more than 4% of the time for any feature evaluated. Moreover, the accelerated sequence was judged by all six readers to have better quality than the clinical sequence. The new technology also allowed creation of MRI films in 75% less time (about 15 minutes). The study was published on August 8, 2020, in the American Journal of Roentgenology.

“This study is an important step toward clinical acceptance and utilization of AI-accelerated MRI scans, because it demonstrates for the first time that AI-generated images are indistinguishable in appearance from standard clinical MR exams and are interchangeable in regards to diagnostic accuracy,” said lead author Professor Michael Recht, MD, of NYU Langone. “The results represent the culmination of nearly two years of open research from Facebook AI and NYU Langone’s fastMRI initiative, a collaborative effort to improve medical imaging technology and advance research using AI to generate images from limited data.”

Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to the new one in order to form a hierarchical representation.


Related Links:
Facebook
NYU Langone Medical Center


Ultrasound Imaging System
P12 Elite
NMUS & MSK Ultrasound
InVisus Pro
New
Digital Radiographic System
OMNERA 300M
Ultrasound Scanner
TBP-5533

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.