We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Microwave Chip Technology may Replace X-Rays for Medical Imaging

By MedImaging staff writers
Posted on 23 Jun 2008
Print article
Microwaves with frequencies from a few hundred gigahertz (GHz) up to slightly over one terahertz (THz) penetrate just a short distance into surfaces without the ionizing damage caused by X-rays. This technology could be used to detect skin cancer or image dental flaws beneath the enamel. It could also be a valuable tool for airport security, for example, to detect objects hidden under clothing.

Most of these applications require inexpensive portable hardware that can generate signals in the GHz to THz range with more than one Watt of power. However, transistors on a standard silicon chip have been limited to a few milliwatts at up to about 100 GHz.

Now a method of generating high-power signals at frequencies of 200 GHz and higher on an ordinary silicon chip has been proposed by Dr. Ehsan Afshari, a Cornell University (Ithaca, NY, USA) assistant professor of electrical and computer engineering, and Dr. Harish Bhat, assistant professor of mathematics at the University of California-Merced (USA). The researchers presented a mathematical analysis of the new method in the May 2008 issue of the journal Physical Review E.

Drs. Afshari and Bhat propose to use a phenomenon known as nonlinear constructive interference. Linear constructive interference occurs when two signals that are in phase-- that is, with their peaks and valleys matched--create a new signal as large as both added together. But if the signals are traveling through an uneven medium, the waves can become distorted, some delayed, some moving ahead to produce a "nonlinear” result that combines many small waves into fewer large peaks. Dr. Afshari correlated the effect to the breaking of waves on the seashore. In the open ocean, waves travel as smooth undulations. However, near shore the waves encounter an uneven surface at differing depths and become distorted into breakers.

To generate this effect on a chip, the researchers proposed a lattice of squares comprised of inductors--the equivalent of tiny coils of wire--with each intersection grounded through a capacitor. An electrical wave moves across the lattice by alternately filling each inductor then discharging the current into the adjacent capacitor. A capacitor temporarily stores and releases electrons, and these capacitors, made of layers of silicon and silicon dioxide, are designed to vary their storage capacity as the voltage of the signal changes, creating the equivalent of the varying depths of an ocean beach and distorting the timing of the electrical signals that pass by.

When low frequency, low-power signals are applied simultaneously to both the vertical and horizontal wires of the lattice, the waves they produce interfere as they meet across the lattice, combining many small waves into one large peak. The process produces harmonic signals at multiples of the original frequency, and a high-power, high-frequency signal can be read out somewhere in the middle of the lattice.

According to computer simulations made by the researchers, the process can be implemented on a common complimentary metal-oxide silicon (CMOS) chip to generate signals at frequencies well above the ordinary cutoff frequencies of such chips, with at least 10 times the input power. Frequencies up to approximately 1.16 THz are possible, the researchers predict.


Related Links:
Cornell University
University of California-Merced
New
MRI System
Ingenia Prodiva 1.5T CS
Opaque X-Ray Mobile Lead Barrier
2594M
NMUS & MSK Ultrasound
InVisus Pro
New
Portable HF X-Ray Machine
PORTX

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.