We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Nanomaterial Promises Enhanced Detection and Treatment of Breast Cancer

By MedImaging International staff writers
Posted on 07 Jan 2014
Print article
Image: Muonium [an exotic atom made up of an antimuon and an electron] trapped inside a buckyball. Muons provide a complementary probe to neutrons, particularly in the areas of magnetism, superconductivity, and charge transport (Photo courtesy of ISIS).
Image: Muonium [an exotic atom made up of an antimuon and an electron] trapped inside a buckyball. Muons provide a complementary probe to neutrons, particularly in the areas of magnetism, superconductivity, and charge transport (Photo courtesy of ISIS).
A collaboration of scientists from the United Kingdom, Denmark, Brazil, and Germany are devising new detection and treatment technology for breast cancer patients.

The study’s findings were published December 2013 in the Journal of Alloys and Compounds. Current diagnostic methods such as mammograms can only detect between 65% and 95% of tumors, and developing better ways of detection is of prime urgency. If not detected and treated early enough, breast cancer can spread to other areas of the body, increasing the probability that the disease will become lethal.

The team of scientists has been using the Polaris instrument at the ISIS pulsed neutron and muon source at the Rutherford Appleton Laboratory (Harwell Oxford, UK) to develop a new bio-nanocomposite that they hope will eventually lead to earlier detection, and more successful treatment, of breast cancer. The new substance exploits the fact that cancer cells attract a molecule called hydroxyapatite, which is a component of bones. The researchers are developing magnetic nanoparticles coated with a biocompatible polymer that includes hydroxyapatite nanocrystals. When administered into the body, these nanoparticles should travel right to cancer cells, and once they do, they make it much easier to detect the tumor on an MRI scan.

Not only do the nanoparticles help to identify tumors, but they may also help to block the metastasis to other areas of the body, as hydroxyapatite is known to suppress that facet of tumor activity.

The next phase of study is to incorporate antitumor agents into the nanoparticles. The magnetic nature of the nanoparticles means that they can be directed to the site of the tumor by using magnets outside of the body. If antitumor drugs can be added to the nanoparticles, then they can be used to deliver the treatment directly to the tumor, optimizing the effectiveness of the treatment and reducing the risk of harmful side effects--imagine a fleet of tiny drones, delivering anticancer weapons right where they are needed.

This research is at a very early stage, and far more study is required, according to the scientists, before it can be developed into a treatment option.

ISIS generates beams of neutrons and muons that allow scientists to study materials at the atomic level using a suite of instruments, frequently described as super-microscopes. It supports a national and international community of more than 2,000 scientists who use neutrons and muons for research in physics, chemistry, materials science, geology, engineering, and biology.

Related Links:

ISIS


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
40/80-Slice CT System
uCT 528
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Multi-Use Ultrasound Table
Clinton

Print article
Radcal

Channels

MRI

view channel
Image: The scans revealed a new dimension of brain network organization in humans (Photo courtesy of Georgia State University/TReNDS Center Research)

New Approach Identifies Signatures of Chronic Brain Disorders Using fMRI Scans

Traditional studies of brain function, often using fMRI scans to detect brain activity patterns, have shown promise in identifying changes in individuals with chronic brain disorders like schizophrenia.... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.