We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Philips Healthcare

Operates in Diagnostic Imaging Systems, Patient Care and Clinical Informatics, Customer Services, and Home Healthcare... read more Featured Products: More products

Download Mobile App




Focused Ultrasound Technology Improves Myocardial Remodeling after Heart Attack

By MedImaging International staff writers
Posted on 05 Mar 2013
Print article
German scientists have revealed encouraging findings that allows the morphologic and functional sequelae of a myocardial infarction to be reduced. Tiny gas bubbles are forced to oscillate within the heart using focused ultrasound, which improves microcirculation and decreases the size of the scar tissue. Following myocardial infarction, the findings revealed that the lab mice have improved cardiac output using this technology, as compared to untreated animals.

The study’s findings were published online February 25, 2013, in the journal PLOS ONE. In Germany, about 280,000 people suffer a myocardial infarction per year; more than 52,000 die as a result. Due to an occluded vessel, parts of the heart muscle no longer have sufficient circulation and the tissue dies off. These areas are not replaced by new heart muscle cells but instead by scar tissue—this typically causes the pump function of the heart to decrease after a heart attack. Scientists from the Bonn University Hospital the Bonn University Hospital Bonn University Hospital (Germany) have tested the technology on mice with which scar tissue can be reduced and cardiac output increased.

“There are attempts to treat the scar tissue with gene therapy or stem cells—by contrast, we have chosen a physical approach to treatment,” reported adjunct professor Dr. med. Alexander Ghanem, from the department of cardiology of the Bonn University Hospital Bonn University Hospital. The researchers injected a total of 17 mice that had earlier had a myocardial infarction with microscopically small, gas-filled bubbles in the bloodstream. Once the microbubbles reached the heart, they were made to vibrate there using focused ultrasound. “Through this mechanical stimulation, the circulation of the area of the infarction is improved—and the scar shrinks,” Dr. Ghanem noted.

The scientists compared the findings of the mice treated with the microbubbles to those of a control group. Two weeks after the myocardial infarction, there was predicted worsening of heart function in the control group due to the maturing of the scar tissue. In contrast, the mice treated with the microbubbles did not develop any cardiac insufficiency. Jonas Dörner, the first author of the study, summarized the results, “The pumping function was significantly better in the treated animals as compared to the control group; there was also a significantly smaller amount of decayed heart muscle tissue.”

The scientists searched for the causes of these promising results, which, however, up to now, are unclear. Following ultrasound treatment of the mice, it was shown that the amount of the body’s own growth hormones significantly increased in the heart. “This is evidently the reason why the scar formation decreased as a result of the oscillating microbubbles,” said Dr. Ghanem. The scientists now hope that humans will also be able to ultimately be treated with the microbubble-ultrasound technique; however, additional study is still needed. “Potentially, all patients who have had an acute myocardial infarction are eligible for this follow-up treatment.” explained Dr. Ghanem. Microbubbles are already used as a contrast imaging agent.

The study, conducted with support from the BONFOR funding program of the Medical Faculty of Bonn University and the German Heart Foundation [Deutsche Herzstiftung e.V.], gave rise to a patent application. “Together with the company Philips Medical [Best, The Netherlands], we developed a novel ultrasonic probe which enables a standardized impulse discharge in the heart,” Dr. Ghanem stated.

The two ultrasound sources linked together are contained in one hybrid ultrasonic probe: one with low frequency for the focused stimulation of the microbubbles in the target organ and one with higher frequency for imaging. In this manner, it can be very precisely determined where the scar tissue and the microbubbles are located. “This study demonstrates again that university research inspires technological developments in medicine,” stated Dr. Ghanem.

Related Links:
Bonn University Hospital
Philips Healthcare

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
Portable Color Doppler Ultrasound System
S5000
Fixed X-Ray System (RAD)
Allengers 325 - 525

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.