We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Intravascular Photoacoustic Imaging Technology Designed for Diagnosing Heart Disease

By MedImaging International staff writers
Posted on 17 Nov 2014
Print article
Image:  A new type of medical imaging technology could diagnose cardiovascular disease by measuring ultrasound signals from molecules exposed to a fast-pulsing laser. The system, called intravascular photoacoustic imaging, takes precise three-dimensional images of plaques lining arteries and identifies deposits that are likely to rupture and cause heart attacks. This cross-sectional view of an artery shows lipids (green) deposited inside the arterial wall. Black and white indicate contrast showing the cross-sectional geometry (Photo courtesy of Purdue University).
Image: A new type of medical imaging technology could diagnose cardiovascular disease by measuring ultrasound signals from molecules exposed to a fast-pulsing laser. The system, called intravascular photoacoustic imaging, takes precise three-dimensional images of plaques lining arteries and identifies deposits that are likely to rupture and cause heart attacks. This cross-sectional view of an artery shows lipids (green) deposited inside the arterial wall. Black and white indicate contrast showing the cross-sectional geometry (Photo courtesy of Purdue University).
Researchers are close to bringing to market a new type of medical imaging technology that could detect cardiovascular disease by measuring ultrasound signals from molecules exposed to a fast-pulsing laser.

The system captures precise three-dimensional (3D) images of plaques lining arteries and identifies deposits that are prone to rupture and cause heart attacks, according to Ji-Xin Cheng, a professor in Purdue University’s (West Lafayette, IN, USA) Weldon School of biomedical engineering and department of chemistry.

The imaging technique reveals the presence of carbon-hydrogen bonds comprising lipid molecules in arterial plaques that cause heart disease. The research findings were published October 29, 2014, in the Nature journal Scientific Reports. “This allows us to see the exact nature of plaque formation in the walls of arteries so we can define whether plaque is going to rupture,” said Michael Sturek, coauthor of the study, and a professor and chair of the department of cellular and integrative physiology at Indiana University School of Medicine (Indianapolis, IN, USA). “Some plaques are more dangerous than others, but one needs to know the chemical makeup of the blood vessel wall to determine which ones are at risk of rupturing.”

Research in the area has been hampered by the inability to perform high-speed imaging in tissue. The researchers resolved this hurdle by developing a Raman laser using a laser that produces 2,000 pulses per second, each pulse capable of generating an image, representing a 100-fold increase in the imaging speed of the new technology, called intravascular photoacoustic imaging. “This innovation represents a big step toward advancing this technology to the clinical setting,” Dr. Cheng said.

The study was authored by researchers from Purdue, Indiana University School of Medicine, the University of California, Davis (USA), the University of California, Irvine (USA), and startup company Spectral Energy (Dayton, OH USA). The imaging technique is “label-free,” meaning it does not require samples to be marked with dyes, making it appealing for diagnostic applications.

The technology is being marketed by the company Vibronix, Inc. (West Lafayette, IN, USA). The laser, which pulses in the near-infrared range of the spectrum, causes tissue to heat and expand locally, generating pressure waves at the ultrasound frequency that can be captured with a device called a transducer.

The system is small enough to be integrated into an endoscope to place into blood vessels using a catheter, according to Dr. Cheng. The near-infrared laser causes enough heating to generate ultrasound but not enough to damage the tissues. The research was conducted with intact pig tissue and will expand to research with live animals and then clinical studies in humans.

Related Links:

Purdue University
Indiana University School of Medicine
University of California, Davis 


New
Gold Member
X-Ray QA Meter
T3 AD Pro
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
New
Doppler String Phantom
CIRS Model 043A
LED-Based X-Ray Viewer
Dixion X-View

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.