We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Study Validates Automated Decision-Making Systems for Analyzing Ultrasound Images

By MedImaging International staff writers
Posted on 16 Jun 2015
Print article
Researchers have presented the results of a study that evaluated the use of automated echocardiography decision-making systems to help clinicians assess heart disease.

Researchers designed an automated machine learning algorithm that analyzes information from a large number of (Two-dimensional) 2-D ultrasound images and were able to differentiate between athlete’s hearts that were enlarged as a result of Hypertrophic Cardiomyopathy (HCM) from those that were enlarged by normal thickening of the heart muscle. HCM is one of the most common causes of sudden cardiac death in athletes.

Researchers at the Icahn School of Medicine at Mount Sinai Hospital (SMMS; New York, NY, USA) carried out the research. The study titled, “Automated Morphological and Functional Phenotyping of Human Heart with Feature Tracking of 2-D Echocardiographic Images Using Machine Learning Algorithms,” was presented at the 26th Annual Scientific Sessions of the American Society of Echocardiography (ESA).

Primary investigator Sukrit Narula, medical student at Icahn School of Medicine at Mount Sinai, said, “I am confident that the use of machine learning algorithms will help create a real-time clinical guidance system for interpreting echocardiographic images and this will be crucial for standardization of interpretation for novice readers and new users of cardiac ultrasound. I am fortunate to be part of Dr. Sengupta's team and their efforts in this project, especially senior investigators like Dr. Dudley, Dr. Khader and Dr. Omar who have helped bring the first steps of this effort to fruition.”

Related Links:

Icahn School of Medicine at Mount Sinai Hospital
American Society of Echocardiography


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Digital Radiographic System
OMNERA 300M
New
Diagnostic Ultrasound System
MS1700C
New
Transducer Covers
Surgi Intraoperative Covers

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.