We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis

By MedImaging International staff writers
Posted on 16 Oct 2024
Print article
Image: INSIGHT MMG software detects breast cancer with 97% accuracy (Photo courtesy of Lunit Inc.)
Image: INSIGHT MMG software detects breast cancer with 97% accuracy (Photo courtesy of Lunit Inc.)

Mammography screening helps reduce breast cancer mortality; however, its accuracy is not perfect. For decades, various strategies have been employed to enhance the interpretive performance of mammography, including double reading. Recently, several commercial artificial intelligence (AI) algorithms have received regulatory approval as supplementary tools for radiologists, showing promising results in detecting cancer on mammograms. These AI algorithms are designed to highlight areas of concern and provide breast-level and examination-level malignant neoplasm scores to assist interpreting radiologists. However, emerging research indicates that these same AI scores may also identify imaging features linked to future breast cancer years before they are clinically diagnosed. If commercial AI algorithms developed for immediate cancer detection can also assess future cancer risk, then more accurate and reliable short-term risk estimation could facilitate personalized preventive measures (e.g., more frequent or supplemental imaging), potentially leading to earlier breast cancer detection and less aggressive treatment. Analyses of AI breast cancer detection scores from consecutive mammography screenings prior to diagnoses are essential to evaluate the potential of these tools for estimating future disease risk. A new study has now investigated whether a commercial AI algorithm for breast cancer detection could predict the development of future cancer.

This collaborative study involving researchers from the Norwegian Institute of Public Health (NIPH, Oslo, Norway) utilized AI cancer detection scores recorded during multiple consecutive screening rounds of the national screening program, BreastScreen Norway. The researchers combined consecutive AI scores with long-term cancer outcomes to determine whether Lunit Inc.’s (Seoul, South Korea) INSIGHT MMG, a regulatory-cleared commercial AI algorithm for breast cancer detection, could estimate the onset of future breast cancers identified in subsequent screening rounds. Lunit INSIGHT MMG analyzes mammography images with 97% accuracy, pinpointing lesions that are suspicious for breast cancer and providing an abnormality score reflecting the likelihood of the existence of detected lesions.

This retrospective cohort study included 116,495 women aged 50 to 69 years who had no prior history of breast cancer and underwent at least three consecutive biennial screening examinations. The researchers employed scores from INSIGHT MMG for breast cancer detection and gathered screening data from multiple consecutive rounds of mammography. The study findings, published in JAMA, indicate that INSIGHT MMG could signal breast cancer up to six years before it develops. The AI system’s discriminatory accuracy for predicting future screening-detected or interval cancer risk 4 to 6 years before diagnosis met or exceeded the performance of established risk calculators currently in widespread use. These results suggest that commercial AI algorithms could help identify women at high risk of developing future breast cancer, paving the way for personalized screening strategies to facilitate earlier diagnosis.

Related Links:
NIPH
Lunit Inc.

Ultrasound Imaging System
P12 Elite
New
Ultrasound Table
General 3-Section Top EA Ultrasound Table
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits
New
Portable X-ray Unit
AJEX140H

Print article

Channels

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The new technology adds coronary artery calcification scoring to ungated chest CT scans (Photo courtesy of Riverain Technologies)

New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans

Coronary artery calcification (CAC) impacts 20 million Americans each year, with over half of incidental findings going unreported. Traditionally, coronary artery calcium scans were only available to symptomatic... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.